Physics - Newton's 3 Laws of Motion
Category: Physics
Newton's First Law of Motion:
If the net force (the vector sum of all forces acting on an object) is zero, then the velocity of the object is constant. Velocity is a vector quantity which expresses both the object's speed and the direction of its motion. The statement that the object's velocity is constant is a statement that both its speed and the direction of its motion are constant.
This consequently means that an object that is at rest will stay at rest unless an external force acts upon it. And an object that is in motion will not change its velocity unless an external force acts upon it.
This is known as uniform motion. An object continues to do whatever it is already doing unless a force is exerted upon it. If it is at rest, it continues in a state of rest. If an object is moving, it continues to move without turning or changing its speed. This is evident in space probes that continually move in outer space. Changes in motion must be imposed against the tendency of an object to retain its state of motion. In the absence of net forces, a moving object tends to move along a straight line path indefinitely. Newton placed the first law of motion to establish frames of reference for which the other laws are applicable. The first law of motion postulates the existence of at least one frame of reference called a Newtonian or inertial reference frame, relative to which the motion of a particle not subject to forces is a straight line at a constant speed. Newton's first law is often referred to as the law of inertia. Thus, a condition necessary for the uniform motion of a particle relative to an inertial reference frame is that the total net force acting on it is zero.
Newton's Second Law of Motion:
The second law states that the net force on an object is equal to the rate of change (that is, the derivative) of its linear momentum p in an inertial reference frame. The second law can also be stated in terms of an object's acceleration. Since the law is valid only for constant-mass systems, the mass can be taken outside the differentiation operator by the constant factor rule in differentiation. Thus, F= Mass * Acceleration.
where F is the net force applied, m is the mass of the body, and a is the body's acceleration. Thus, the net force applied to a body produces a proportional acceleration. In other words, if a body is accelerating, then there is a force on it.
Consistent with the first law, the time derivative of the momentum is non-zero when the momentum changes direction, even if there is no change in its magnitude. Such is the case with uniform circular motion. The relationship also implies the conservation of momentum: when the net force on the body is zero, the momentum of the body is constant. Any net force is equal to the rate of change of the momentum.
Any mass that is gained or lost by the system will cause a change in momentum that is not the result of an external force. Newton's second law requires modification if the effects of special relativity are to be taken into account, because at high speeds the approximation that momentum is the product of rest mass and velocity is not accurate.
Newton's 3rd Law of Motion:
The third law states that all forces exist in pairs: if one object A exerts a force FA on a second object B, then B simultaneously exerts a force FB on A, and the two forces are equal and opposite: FA = −FB. The third law means that all forces are interactions between different bodies, and thus that there is no such thing as a unidirectional force or a force that acts on only one body. This law is sometimes referred to as the action-reaction law, with FA called the "action" and FB the "reaction". The action and the reaction are simultaneous, and it does not matter which is called the action and which is called reaction; both forces are part of a single interaction, and neither force exists without the other.
The two forces in Newton's third law are of the same type (e.g., if the road exerts a forward frictional force on an accelerating car's tires, then it is also a frictional force that Newton's third law predicts for the tires pushing backward on the road).
From a conceptual standpoint, Newton's third law is seen when a person walks: they push against the floor, and the floor pushes against the person. Similarly, the tires of a car push against the road while the road pushes back on the tires�the tires and road simultaneously push against each other. In swimming, a person interacts with the water, pushing the water backward, while the water simultaneously pushes the person forward�both the person and the water push against each other. The reaction forces account for the motion in these examples. These forces depend on friction; a person or car on ice, for example, may be unable to exert the action force to produce the needed reaction force.